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We study families of solitons in a two-dimensional model of the light transmission through a photorefractive
medium equipped with a �quasi-�one-dimensional photonic lattice. The soliton families are bounded from
below by finite minimum values of the peak and total power. Narrow solitons have a single maximum, while
broader ones feature side lobes. Stability of the solitons is checked by direct simulations. The solitons can be
set in motion across the lattice �actually, made tilted in the spatial domain�, provided that the respective boost
parameter does not exceed a critical value. Collisions between moving solitons are studied too. Collisions
destroy the solitons, unless their velocities are sufficiently small. In the latter case, the colliding solitons merge
into a single stable pulse.
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I. INTRODUCTION

As was first predicted in Ref. �1�, a periodic lattice poten-
tial induced in a photorefractive medium, which is character-
ized by the saturable nonlinearity, may be an efficient tool
for creation and stabilization of two-dimensional �2D� spatial
solitons of various types. The prediction was followed by the
experimental observation of ordinary solitons �2�, localized
vortices with the topological charge 1 belonging to the first
�lowest� �3� or second �4� bandgap in the respective linear
spectrum �stable higher-order vortices and supervortices in
such systems were recently predicted too �5��, dipole- and
quadrupole-mode solitons �6�, steady patterns in the form of
soliton necklaces �7�, and some others. A review of the field
was recently given in Ref. �8�.

In the experiment, the periodic potential is induced by the
photonic lattice, which is created as a superposition of coun-
terpropagating laser beams illuminating the photorefractive
crystal in the ordinary polarization, in which the light propa-
gation is nearly linear; then, the spatial solitons are built in a
probe beam launched through the lattice in the extraordinary
polarization �i.e., polarized along the crystalline c axis�,
which is subject to strong nonlinearity induced by the dc bias
electric field applied to the crystal �1,8�. Using this tech-
nique, the square photonic lattice can be created by two pairs
of counterpropagating beams illuminating the crystal in di-
rections orthogonal to each other and to the probe beam that
gives rise to the soliton�s�.

On the other hand, 2D solitons can also be supported by a
low-dimensional, i.e., quasi-one-dimensional �Q1D� periodic
potential, that may be readily induced by a single pair of
counterpropagating beams illuminating the bulk crystal in
the ordinary polarization. Recently, it has been predicted that
the Q1D lattice may efficiently stabilize 2D solitons in the
model with the cubic �rather than saturable� nonlinearity �9�.
This result directly applies to Bose-Einstein condensates
with attractive interactions between atoms, trapped in a pho-
tonic lattice; moreover, it has also been demonstrated �9,10�
that a quasi-2D lattice can stabilize three-dimensional �3D�

solitons against strong collapse that the cubic nonlinearity
gives rise to in the latter case. Two—dimensional solitons
supported by the Q1D lattice naturally demonstrate strong
anisotropy, which makes them essentially different from the
usual 2D solitons. A significant advantage offered by the use
of the Q1D lattice is the fact that the remaining free direction
allows the solitons to move �in the spatial domain, “motion”
means a tilt of the soliton beam�, which opens a way to study
collisions between them, formation of bound states, etc. �9�.
The mobility of 2D solitons may also be strongly anisotropic
in some 2D lattices �11�.

The objective of the present work is to introduce 2D soli-
tons in the model of the photorefractive media with the satu-
rable nonlinearity and Q1D periodic potential �Q1D
solitons—which are, effectively, one-dimensional
objects—in the model of the 2D photorefractive medium
with the Q1D lattice were introduced in Ref. �12��. The soli-
ton solutions are constructed in Sec. II. We demonstrate that
the Q1D solitons are characterized by minimum peak and
total intensities necessary for their existence, and they are
stable in the entire existence region. Moving solitons and
collisions between them are studied in Sec. III. We find that
collisions destroy the solitons, unless the collision “velocity”
�in fact, the relative tilt of the two spatial solitons� is small
enough; in the latter case, the colliding solitons merge into a
single soliton, irrespective of the orientation of the velocity
vector relative to the Q1D lattice.

The model outlined above is based on an equation for the
spatial evolution of the probe field �the slowly varying am-
plitude U of the electromagnetic wave in the extraordinary
polarization�, which follows the standard description of pho-
torefractive media �1�. In normalized units, the equation
takes the form

i
�U

�z
+

�2U

�x2 +
�2U

�y2 −
U

1 + I0 cos2��x/d� + �U�2
= 0, �1�

where I0 and d are the peak intensity and period of the pho-
tonic lattice induced by the superposition of counterpropa-
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gating waves launched along the x axis in the ordinary
polarization. The normalized propagation and transverse
coordinates, z and �x ,y�, are proportional to their counter-
parts measured in physical units, Z and �X ,Y�, so that
z=Z / �k0�n0� and �x ,y�= �X ,Y� /�2k0n0�n0, where k0

is the propagation constant of the probe wave, and
�n0=n0

3r33E /2 is the change of the refractive index n0
�accounted for by the electro-optic coefficient r33� caused by
the dc electric field E.

II. TWO-DIMENSIONAL SOLITONS AND THEIR
STABILITY

Soliton solutions to Eq. �1� are searched for as

U = u�x,y�e−i�z, �2�

where −� is the shift of the propagation constant in the soli-
ton, and the real function u satisfies the equation

�2u

�x2 +
�2u

�y2 + �� −
1

1 + I0 cos2��x/d� + u2�u = 0. �3�

Solutions u�x ,y� of this equation were found by means of
an iteration procedure in the Fourier space. To this end,
following a numerical method elaborated in Ref. �6�, Eq. �3�
was rewritten for the Fourier transform û�kx ,ky� in the
form

û =
1

kx
2 + ky

2 − � + 1
	F
 I0 cos2��x/d�u

1 + I0 cos2��x/d� + �u�2�
+ F
 �u�2u

1 + I0 cos2��x/d� + �u�2�� , �4�

F�¯� standing for the 2D Fourier transform. A direct itera-
tion procedure applied to Eq. �4� does not converge, in the
general case. Therefore, the equation was modified. Defining
integral factors:

� =  	�kx
2 + ky

2 − � + 1�û

− F
 I0 cos2��x/d�
1 + I0 cos2��x/d� + �u�2

u��û*dkxdky , �5�

� =  F
 �u�2u

1 + I0 cos2��x/d� + �u�2�û*dkxdky , �6�

where � stands for the complex conjugation, the following
iterative equation was introduced,

ûn+1 =
1

kx
2 + ky

2 − � + 1

�	
�n

�n
�1/2

F
 I0 cos2��x/d�
1 + I0 cos2��x/d� + �un�2

un�
+ 
�n

�n
�3/2

F
 �un�2un

1 + I0 cos2��x/d� + �un�2�� , �7�

where �n and �n are the factors �5� and �6� corresponding

to the function ûn. Fixed points of Eq. �7�, corresponding to
limn→���n /�n�=1, yield solutions to Eq. �4� as well. The
iterative procedure based on Eq. �7� provides for fast conver-
gence, and produces solutions displayed below.

Typical examples of the 2D solitons are shown in Fig. 1.
In particular, the picture observed in the left column of the
figure is typical to cases when the lattice potential is weak,
and/or the soliton’s peak intensity essentially exceeds the
lattice’s amplitude I0: the soliton is practically isotropic,
without a conspicuous effect of the lattice. The picture in the
right column is typical for a relatively strong lattice with a
large period: then, the soliton is almost entirely trapped in
one potential trough, assuming an elliptic shape. In either
case, the soliton’s shape features a single lobe, either circular
or elliptic one.

The most interesting case is represented by the central
column in Fig. 1, which demonstrates a soliton with well-
pronounced side lobes in a moderately strong lattice �in
physical units, this case corresponds to typical values of pa-
rameters available in the experiment�. Naturally, the multi-
humped structure is observed only along the axis x, while in
the free direction, y, the soliton always features a simple
single-hump form. Results reported below are given for the
same period, d=2�, which gives rise to the central column in
Fig. 1. For other values of d which are neither very small nor
very large, the results are quite similar.

The solitons are characterized by the peak intensity
�power�, Ip��u�x=0,y=0��2, and integral intensity,

P � 
−�

+� 
−�

+�

�u�x,y��2dxdy . �8�

Accordingly, soliton families for given values of I0 and d are
represented by the dependences P��� and Ip���, see Fig. 2

FIG. 1. �Color online� Typical examples of two-dimensional
solitons found from Eq. �3� with a moderately strong quasi-one-
dimensional photonic lattice, corresponding to I0=5. Panels �a�–�c�
show the intensity distribution in the photonic lattice, Iphl�x�
= I0 cos2��x /d�, for d=� /5, 2�, and 10�, respectively. The two-
dimensional intensity field in the respective solitons is shown in
panels �d�–�f�, and the corresponding intensity profiles in two cross
sections of the solitons, along y=0 and x=0, are displayed in panels
�g�–�i� by continuous and dashed lines, respectively.
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�recall −� is the soliton propagation-constant shift, defined
in Eq. �2��. An important feature observed in this figure is
that the 2D solitons exist, with a given lattice strength I0,
only for P and Ip exceeding certain finite minimum �thresh-
old� values, Pmin and Ip,min; for instance, Ip,min=0.0411 for
I0=5 and d=2�. Both minimum values are shown, as func-
tions of the strength I0 of the photonic lattice, in Fig. 3. It
should be noticed that a lower intensity threshold necessary
for the existence of 2D solitons in models combining lattice
potentials with various nonlinearities was found in earlier
works �1,9,13�.

It is easy to check that the soliton families shown in Figs.
1 and 2 belong to the semi-infinite bandgap in the spectrum
of the linearized equation �1�. It is known that, on top of the
semi-infinite gap, a sufficiently strong lattice may give rise to
solitons in finite bandgaps of models combining a periodic
potential and saturable nonlinearity �see, e.g., Ref. �14��. In
this work, we do not aim to look for gap solitons of such
types.

Proceeding to the investigation of stability of the 2D soli-
tons, we first of all note that the negative slope of the depen-
dence P���, obvious in Fig. 2, suggests possible stability of

the soliton families pursuant to the Vakhitov-Kolokolov
�VK� criterion �15�, which may guarantee the absence of
unstable modes of small perturbations corresponding to real
eigenvalues of the instability growth rate. The full stability is
not provided by the VK criterion, and, moreover, the appli-
cability of the criterion even to perturbations with real eigen-
values was not proven in the present context. In fact, a coun-
terexample is known: soliton subfamilies which should be
VK-unstable in a 1D model combining a periodic potential
of the Kronig-Penney type and cubic-quintic nonlinearity
�another variety of the saturation� were found to be com-
pletely stable �14�.

We have tested stability of the 2D solitons in direct simu-
lations of Eq. �1�, making use of the fast Fourier transform in
directions x and y and Runge-Kutta method to advance in z.
In each simulation, some amount of random noise was added
to the soliton as a perturbation. It has been concluded that all
the solitons are stable, as �formally� predicted by the VK
criterion. An example illustrating the stability of a large-
amplitude 2D soliton with I0=5 and Ip=56.76 is displayed in
Fig. 4�a�. Broad solitons, with the peak intensity close to the
threshold value Ip,min, are stable too, although their peak in-
tensity may slowly grow with z, as shown in Fig. 4�b� for the
same lattice strength, I0=5, as in Fig. 4�a�, but Ip=1.1. A
plausible explanation to the latter effect is that the combina-
tion of the lattice potential and self-focusing nonlinearity �for
relatively small Ip, the saturation does not suppress the self-
focusing� leads to sucking the perturbation wave field into
the spot where the soliton’s maximum is located, and the
buildup of the additional wave field around the soliton’s peak
may be conspicuous, against the backdrop of the relatively
small value of Ip.

III. MOVING TWO-DIMENSIONAL SOLITONS AND
THEIR COLLISIONS

Solutions Ũ�x ,y ,z� for solitons “moving” �actually, tilted�
along the free direction y can be generated from the “quies-

FIG. 2. The total intensity �power� �a� and peak intensity �b� of
families of two-dimensional solitons vs the absolute value of the
propagation-constant shift, �, for d=2�, and different values of the
photonic-lattice strength, I0. The curves terminate at points where
the solitons cease to exist.

FIG. 3. The minimum peak intensity, Ip,min, and total power,
Pmin, necessary for the existence of the two-dimensional solitons
vs the strength, I0, of the underlying quasi-one-dimensional
lattice.
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cent” solitons reported in the previous section, U�x ,y ,z�, by
means of the Galilean transformation,

Ũ�x,y,z� = U�x,y − 2Qyz,z�exp�iQyx − iQy
2z� , �9�

where Qy is an arbitrary boost parameter, that determines the
soliton’s “velocity” �tilt� 2Qy. On the other hand, generation
of solitons tilted along the x axis is a nontrivial problem. In
the 1D version of Eq. �1�, without the term �2U /�y2, a family
of tilted solitons was introduced in Ref. �12�.

We looked for solitons “moving” along the x axis by
simulating the evolution of initial states of the form

U0�x,y� = U�x,y�exp�iQxx� , �10�

cf. Eq. �9�, where U�x ,y� corresponds to a zero-velocity sta-
tionary soliton solution. The boost parameter in Eq. �10�, Qx,
was gradually increased from a run to a run, until reaching a
critical �maximum� value Qmax, at which the initial configu-
ration �10� does not generate any soliton, but rather gets
destroyed into small-amplitude waves. Results of the simu-
lations are summarized in Fig. 5, in the form of plots show-
ing Qmax as a function of the soliton’s peak intensity Ip, for
different values of the lattice strength I0. Measurement of the

established value of the average “velocity” �tilt� of the soli-
tons generated by the initial condition �10� with Qx�Qmax
produces values which are quite close to ones �2Qx� corre-
sponding to the Galilean transform �9� in the free space.
Finally, applying the Galilean transformation �9� to the soli-
ton already moving along the x direction, one can generate a
pulse moving in any direction �in particular, along the diag-
onal, x=y, see below�.

Once the stability limits for the moving solitons are avail-
able, the next step is to consider collisions between them.
The outcome of the collision may depend on the magnitude
and direction of the velocities, and the aiming mismatch �its
zero value corresponds to the head-on collision�.

Numerous simulations demonstrate that the collision com-
pletely destroys both solitons, unless their velocities are suf-
ficiently small. An example of the destructive collision is
displayed in Fig. 6. In particular, in the case of I0=5, the
solitons must not be set in motion by the boost with �Qx�

FIG. 4. �Color online� �a� Stable evolution of a high-intensity
soliton, with I0=5 and Ip=56.76, under random perturbations, is
illustrated by the z dependence of the soliton’s peak intensity. �b�
The same for a low-intensity soliton, with Ip=1.1.

FIG. 5. The maximum value of the boost parameter, Qx, which
generates solitons moving �actually, tilted in the spatial domain�
along the x axis vs the soliton’s peak intensity, Ip, for different value
of the strength I0 of the underlying lattice. For Qx	Qmax, the ap-
plication of the boost destroys the soliton.

FIG. 6. �Color online� A typical example of destructive colli-
sions between moving solitons, for I0=5 and Ip=1.78. The velocity
vectors of the colliding solitons �shown by arrows in the first panel,
in this figure and in Fig. 7� have components Qx,y = ±0.12.
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or �Qy� in excess of 0.05, otherwise the collision will destroy
them. This critical value is the same for the motion in the x
and y directions, up to the accuracy of the simulations.
Moreover, if the solitons are boosted in the diagonal direc-
tion and then collide, the same limit, �Q�=0.05, was found
for the absolute value of the corresponding vectorial boost,
�Q�=�Qx

2+Qy
2, i.e., the critical boost is virtually isotropic.

Collisions between solitons boosted by �Q� with values
smaller than the critical one result in their merger into a
single pulse. An example of the merger resulting from
the collision with a finite aiming mismatch is displayed
in Fig. 7. Further, the mergers caused by head-on collisions
in the diagonal or vertical �y� direction are presented in
Fig. 8. As seen from the figures, the pulse generated
by the merger performs intrinsic vibrations, but remains
stable.

The above examples displayed collisions of single-lobe
solitons. Collisions between their broader counterparts,
which feature side lobes in the x direction, are quite similar.
Figure 9 presents an example of the head-on collision be-
tween sufficiently slowly moving solitons of the latter type.
The collision again leads to the merger of the pulses into a
single pulse, which then performs conspicuous intrinsic vi-
brations, but remains a stable object. Additional simulations
show that the soliton produced by the merger of two multi-
lobe solitons can also easily move across the lattice, if given
a push.

Thus we conclude that collisions between the 2D solitons
are always strongly inelastic �both the destruction and
merger of the colliding solitons are inelastic outcomes�, at-
testing to the fact that the present model is far from
any integrable limit, where collisions between solitons would
be elastic. For comparison, we note that the collisions
may be less inelastic in the 2D model with the Q1D periodic
potential if the nonlinearity is cubic �9�. In that model,
elastic collisions are possible �passage of the solitons in
the case of a finite aiming mismatch, or their mutual bounce
after the head-on collision, if the phase shift between them
is ��. An additional inelastic outcome of the head-on
collisions between in-phase 2D solitons, which was
observed in the model with the cubic nonlinearity, but

FIG. 7. �Color online� Merger of colliding solitons which were
set in motion by the boost Qx= ±0.01, with a finite aiming mis-
match in the y direction. In this case, I0=25 and Ip=83.97.

FIG. 8. �Color online� Merger as a result of head-on collisions
between slowly moving solitons that were set in motion �a�
along the diagonal direction, by the application of the boost with
Qx=Qy = ±0.01, and �b� in the vertical direction, by the boost
Qy = ±0.01. In case �a�, I0=25 and Ip=83.97; in case �b�, I0=15 and
Ip=27.92.

FIG. 9. �Color online� Merger of broad �multilobed� solitons
caused by the head-on collision. The solitons were set in motion
by the vertical boost with Qy = ±0.01. In this case, I0=5 and
Ip=1.786.
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cannot occur if the nonlinearity is saturable, is collapse of
the single pulse formed after the merger of two solitons
�i.e., formation of a singularity after a finite propagation
distance�.

IV. CONCLUSION

In this paper, we have proposed a model of the two-
dimensional �2D� medium with the saturable nonlinearity
and quasi-1D lattice potential, that can be realized in the
spatial domain in a bulk photorefractive crystal. The subject
of the analysis was 2D solitons �ones belonging to the semi-
infinite bandgap in the linear spectrum�. It was demonstrated
that they form families bounded from below by finite mini-

mum values of the peak and total intensities. Narrow pulses
feature a single maximum, while broad solitons contain side
lobes. Direct simulations confirm that the solitons are stable.
They can be set in motion �actually, tilted in the spatial do-
main� in an obvious way along the quasi-1D lattice, and also
across the lattice, provided that, in the latter case, the boost
parameter does not exceed a critical value, beyond which the
soliton is destroyed.

Collisions between stable moving solitons were studied in
detail, with the conclusion that the collisions destroy the soli-
tons, unless their velocities are sufficiently small. In the latter
case, the colliding solitons merge into a single stable pulse
that performs intrinsic vibrations. The predictions reported in
this paper can be readily implemented experimentally in
photorefractive crystals.
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